Ультрафиолетовая спектроскопия - определение. Что такое Ультрафиолетовая спектроскопия
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ультрафиолетовая спектроскопия - определение

Найдено результатов: 54
УЛЬТРАФИОЛЕТОВАЯ СПЕКТРОСКОПИЯ         
спектроскопия ультрафиолетовой области спектра (см. Ультрафиолетовое излучение). Ультрафиолетовая спектроскопия в области длин волн 200-10 нм называется вакуумной, т. к. воздух в этой области непрозрачен и для исследований применяют вакуумные спектральные приборы. Области приложения - спектральный анализ, астрофизика, физика плазмы и др.
Ультрафиолетовая спектроскопия         

УФ-спектроскопия, раздел спектроскопии, включающий получение, исследование и применение спектров испускания, поглощения и отражения в УФ-области спектра от 400 нм до 10 нм. Исследованием спектров в области 200-10 нм занимается Вакуумная спектроскопия (см. Ультрафиолетовое излучение). В области спектра 400-200 нм используют приборы, построенные по тем же оптическим схемам, что и для видимой области спектра; отличие состоит лишь в замене стеклянных призм, линз и др. оптических деталей на кварцевые. При измерении интенсивности УФ-излучения в качестве эталонных применяют источники, имеющие в УФ-области спектра известное распределение спектральной яркости (ленточная вольфрамовая лампа, угольная дуга, а также Синхротронное излучение); стандартными приёмниками в этой области спектра являются термопара и градуированные фотоэлементы.

У. с. применяется при исследовании атомов, ионов, молекул и твёрдых тел для изучения их уровней энергии, вероятностей переходов и др. характеристик. В УФ-области спектра лежат резонансные линии нейтральных, одно- и двукратно ионизованных атомов, а также спектральные линии, испускаемые возбуждёнными конфигурациями высокоионизованных атомов. Электронно-колебательно-вращательные полосы молекул в основном также располагаются в ближней УФ-области спектра. Здесь же сосредоточены полосы поглощения в спектрах большинства полупроводников, возникающие при прямых переходах из валентной зоны в зону проводимости. Многие химические соединения дают сильные полосы поглощения в УФ-области, что создаёт преимущества использования У. с. в спектральном анализе. У. с. имеет большое значение для внеатмосферной астрофизики при изучении Солнца, звёзд, туманностей и др.

Лит.: Taffе́ Н. Н., Orehin М., Theory and applications of ultraviolet spectroscopy, N. Y., [1962]. см. также лит. при ст. Ультрафиолетовое излучение.

А. Н. Рябцев.

Ультрафиолетовая спектроскопия         
Ультрафиолетовая (электронная) спектроскопия — раздел оптической спектроскопии, который включает получение, исследование и применение спектров испускания, поглощения и отражения в ультрафиолетовой области.
Фотоэлектронная спектроскопия         

метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Согласно закону Эйнштейна, сумма энергии связи вылетающего электрона (работы выхода (См. Работа выхода)) и его кинетическая энергии равна энергии падающего фотона hν (h - Планка постоянная, ν - частота падающего излучения). По спектру электронов можно определить энергии связи электронов и их уровни энергии в исследуемом веществе.

В Ф. с. применяются монохроматическое рентгеновское или ультрафиолетовое излучения с энергией фотонов от десятков тысяч до десятков эв (что соответствует длинам волн излучения от десятых долей Å до сотен Å). Спектр фотоэлектронов исследуют при помощи электронных спектрометров высокого разрешения (достигнуто разрешение до десятых долей эв в рентгеновской области и до сотых долей эв в ультрафиолетовой области).

Метод Ф. с. применим к веществу в газообразном, жидком и твёрдом состояниях и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости). Для молекул энергии связи электронов во внутренних оболочках образующих их атомов зависят от типа химической связи (химические сдвиги), поэтому Ф. с. успешно применяется в аналитической химии для определения состава вещества и в физической химии для исследования химической связи. В химии метод Ф. с. известен под название ЭСХА - электронная спектроскопия для химического анализа (ESCA - electronic spectroscopy for chemical analysis).

Лит.: Вилесов Ф. И., Курбатов Б. Л., Теренин А. Н., "Докл. АН СССР", 1961, т. 138, с. 1329-32; Электронная спектроскопия, пер. с англ., М., 1971.

М. А. Ельяшевич.

Фотоэлектронная спектроскопия         
Фотоэлектронная спектроскопия — метод изучения строения вещества, основанный на измерении энергетических спектров электронов, вылетающих при фотоэлектронной эмиссии. Метод фотоэлектронной спектроскопии применим к веществу в газообразном, жидком и твёрдом состояниях, и позволяет исследовать как внешние, так и внутренние электронные оболочки атомов и молекул, уровни энергии электронов в твёрдом теле (в частности, распределение электронов в зоне проводимости).
ЯМР-спектроскопия         
  • Схема спектрометра ЯМР с преобразованием Фурье
Спектроскопи́я я́дерного магни́тного резона́нса, ЯМР-спектроскопия — спектроскопический метод исследования химических объектов, использующий явление ядерного магнитного резонанса. Явление ЯМР открыли в 1946 году американские физики Ф. Блох и Е.Персел. Наиболее важными для химии и практических применений являются спектроскопия протонного магнитного резонанса (ПМР-спектроскопия), а также спектроскопия ЯМР на ядрах углерода-13 (13C ЯМР-спектроскопия), фтора-19 (19F ЯМР-спектроскопия), фосфора-31 (31P ЯМР-спектроскопия). Если элемент обладает нечетным порядковы�
ИНФРАКРАСНАЯ СПЕКТРОСКОПИЯ         
  • Оптический путь ИК-излучения в кристалле НПВО
  • 100px
  • Уильям Кобленц
  • Ячейка с алмазными наковальнями
  • Схема спектроскопии диффузного отражения
  • ИК-спектр [[этанол]]а, записанный из плёнки вещества в режиме пропускания (''T'')
  • Схема оптического Фурье-спектрометра.<br>
Фурье-спектрометр представляет собой [[интерферометр Майкельсона]], в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ.<br>
1 — Источник белого света или исследуемый источник;<br>
2 — Линза коллиматора;<br>
3 — Кювета с исследуемым веществом;<br>
4 — Опорный (эталонный) лазер;<br>
5 — Вспомогательные зеркала опорного пучка от лазера;<br>
6 — Фотоприёмник опорного пучка;<br>
7 — Неподвижное зеркало;<br>
8 — Подвижное зеркало;<br>
9 — Механический привод подвижного зеркала;<br>
10 — Объектив фотоприёмника;<br>
11 — Фотоприёмник;<br>
12 — Управляющий и обрабатывающий интерферограмму компьютер;<br>
13 — Светоделительная пластина.
  • Интерферограмма полихроматического излучения
  • см<sup>−1</sup>]].
  • хлорида меди(I)]]
  • ИК-спектр [[полистирол]]а
  • 100px
  • Потенциальные кривые для гармонического и ангармонического осцилляторов
  • бромида калия]]
  • Схема спектроскопии зеркального отражения
  • 100px
  • Поглощение электромагнитного излучения
  • 100px
  • 100px
  • 100px
получение и исследование спектров в инфракрасной области. Методами инфракрасной спектроскопии изучают колебательные и вращательные спектры молекул и определяют по ним химический состав и структуру молекул.
РЕНТГЕНОВСКАЯ СПЕКТРОСКОПИЯ         
  • кристаллографической плоскостью]] <math>10\bar{1}1.</math> Римскими цифрами I, II, III отмечены дифракционные спектры 1-го, 2-го и 3-го порядков.
методы исследования атомной структуры по рентгеновским спектрам. Для получения рентгеновских спектров исследуемое вещество бомбардируют электронами в рентгеновской трубке либо возбуждают флуоресценцию исследуемого вещества, облучая его рентгеновским излучением.
Рентгеновская спектроскопия         
  • кристаллографической плоскостью]] <math>10\bar{1}1.</math> Римскими цифрами I, II, III отмечены дифракционные спектры 1-го, 2-го и 3-го порядков.

получение рентгеновских спектров (См. Рентгеновские спектры) испускания и поглощения и их применение к исследованию электронной энергетической структуры атомов, молекул и твёрдых тел. К Р. с. относят также рентгено-электронную спектроскопию, т. е. спектроскопию рентгеновских фото- и оже-электронов, исследование зависимости интенсивности тормозного и характеристического спектров от напряжения на рентгеновской трубке (См. Рентгеновская трубка) (метод изохромат), спектроскопию потенциалов возбуждения.

Рентгеновские спектры испускания получают либо бомбардировкой исследуемого вещества, служащего мишенью в рентгеновской трубке, ускоренными электронами (первичные спектры), либо облучением вещества первичными лучами (флуоресцентные спектры). Спектры испускания регистрируются рентгеновскими спектрометрами (см. Спектральная аппаратура рентгеновская). Их исследуют по зависимости интенсивности излучения от энергии рентгеновского фотона. Форма и положение рентгеновских спектров испускания дают сведения об энергетическом распределении плотности состояний валентных электронов, позволяют экспериментально выявить симметрию их волновых функций и их распределение между сильно связанными локализованными электронами атома и коллективизированными электронами твёрдого тела.

Рентгеновские спектры поглощения образуются при пропускании узкого участка спектра тормозного излучения через тонкий слой исследуемого вещества. Исследуя зависимость коэффициента поглощения рентгеновского излучения веществом от энергии рентгеновских фотонов, получают сведения об энергетическом распределении плотности свободных электронных состояний. Спектральные положения границы спектра поглощения и максимумов его тонкой структуры позволяют найти кратность зарядов ионов в соединениях (её можно определить во многих случаях и по смещениям основных линий спектра испускания). Р. с. даёт возможность также установить симметрию ближнего окружения атома, исследовать природу химической связи. Рентгеновские спектры, возникающие при бомбардировке атомов мишени тяжёлыми ионами высокой энергии, дают информацию о распределении излучающих атомов по кратности внутренних ионизаций. Рентгеноэлектронная спектроскопия находит применение для определения энергии внутренних уровней атомов, для химического анализа и определения валентных состояний атомов в химических соединениях.

Лит.: Блохин М. А., Физика рентгеновских лучей, М., 1957; Рентгеновские лучи, под ред. М. А. Блохина, М., 1960; Баринский Р. Л., Нефедов В. И., Рентгено-спектральное определение заряда атомов в молекулах, М., 1966; Зимкина Т. М., Фомичев В. А., Ультрамягкая рентгеновская спектроскопия, Л, 1971; Немошкаленко В. В., Рентгеновская эмиссионная спектроскопия металлов и сплавов, К., 1972; X-ray spectroscopy, ed. L. V. Azaroff, N. - Y., 1974.

М. А. Блохин.

Колебательные спектры         
  • Оптический путь ИК-излучения в кристалле НПВО
  • 100px
  • Уильям Кобленц
  • Ячейка с алмазными наковальнями
  • Схема спектроскопии диффузного отражения
  • ИК-спектр [[этанол]]а, записанный из плёнки вещества в режиме пропускания (''T'')
  • Схема оптического Фурье-спектрометра.<br>
Фурье-спектрометр представляет собой [[интерферометр Майкельсона]], в котором одно из зеркал выполнено подвижным, что позволяет варьировать разницу хода лучей. Смещение зеркала производится механическим приводом, управляемым ЭВМ.<br>
1 — Источник белого света или исследуемый источник;<br>
2 — Линза коллиматора;<br>
3 — Кювета с исследуемым веществом;<br>
4 — Опорный (эталонный) лазер;<br>
5 — Вспомогательные зеркала опорного пучка от лазера;<br>
6 — Фотоприёмник опорного пучка;<br>
7 — Неподвижное зеркало;<br>
8 — Подвижное зеркало;<br>
9 — Механический привод подвижного зеркала;<br>
10 — Объектив фотоприёмника;<br>
11 — Фотоприёмник;<br>
12 — Управляющий и обрабатывающий интерферограмму компьютер;<br>
13 — Светоделительная пластина.
  • Интерферограмма полихроматического излучения
  • см<sup>−1</sup>]].
  • хлорида меди(I)]]
  • ИК-спектр [[полистирол]]а
  • 100px
  • Потенциальные кривые для гармонического и ангармонического осцилляторов
  • бромида калия]]
  • Схема спектроскопии зеркального отражения
  • 100px
  • Поглощение электромагнитного излучения
  • 100px
  • 100px
  • 100px

вибрационные спектры, спектры, обусловленные колебаниями атомов в молекуле (см. Молекулярные спектры) и атомов, ионов и их групп в кристаллах (см. Спектры кристаллов) и жидкостях. К. с. обычно состоят из отдельных спектральных полос. Наблюдаются К. с. поглощения и отражения в близкой инфракрасной области и К. с. комбинационного рассеяния (См. Комбинационное рассеяние света) в видимой области.

Википедия

Ультрафиолетовая спектроскопия

Ультрафиолетовая (электронная) спектроскопия — раздел оптической спектроскопии, который включает получение, исследование и применение спектров испускания, поглощения и отражения в ультрафиолетовой области.

Энергия фотонов ультрафиолетового и видимого диапазонов спектра достаточно высока (1,7—100 эВ, длина волны примерно от 100 до 730 нм), чтобы перевести электроны органических молекул из основного состояния в возбужденное — со связывающей на разрыхляющие орбитали. Разность энергий между этими состояниями квантована, поэтому молекулы поглощают фотоны только строго определенной энергии.

В УФ-области поглощают все органические вещества. Как правило, «рабочая» область составляет интервал 190—730 нм, главным образом от 200 до 380 нм. В этих областях прозрачны оптические материалы для изготовления призм и кювет(кварцевое стекло, сапфировое стекло). Длины волн менее 190 нм (вакуумный ультрафиолет) менее удобен для работы, так как в этой области поглощают компоненты воздуха — кислород и азот. Поэтому для работы здесь используются специальные вакуумные камеры, что усложняет лабораторную практику, однако часто бывает незаменимым, например, при исследовании диэлектриков с большой величиной запрещенной зоны.

Необходимые для исследования количества вещества невелики — около 0,1 мг. В связи с этим УФ-спектроскопия является одним из наиболее распространенных физико-химических методов исследования органических и неорганических соединений.

Что такое УЛЬТРАФИОЛЕТОВАЯ СПЕКТРОСКОПИЯ - определение